Link-Based Calculation of Motor Vehicle Air Toxins Using MOBILE6.2

Bill Stein and Dick Walker

Jen Pannig Department

600 NE Grand Avenue, Portland, OR 97232-2736 steinb@metro.dst.or.us and walkerd@metro.dst.or.us

Rich Cook and Chad Bailey
U.S. EPA, Office of Transportation and Air Quality
2000 Traverwood Drive, Ann Arbor, MI 48105
cook.rich@epa.gov and bailey.chad@epa.gov

Introduction

- Typical approach of gridding highway vehicle emissions for air quality modeling may underestimate emission density along roads.
- In this study a methodology is developed for estimating emissions along individual roadway links for 27 hazardous air pollutants
- MOBILE6.2 highway vehicle emission factor model is used in conjunction with link-based traffic data from Portland's travel demand model.
- The resulting inventory includes emission estimates for seven daily time periods for over 24,000 roadway links.

Project Flow Diagram

Diurnal Distribution of Trips (Survey, Model)

Emission Rate
Calculation (MOBILE)

Traffic Assignment (EMME/2)

Speed Equation Regression

Database (Oracle)

Assignments (EMME/2)

Inputs:

- Time factors from 1994-95 household survey
- Vehicle trips from travel model for 1999

Outputs:

Speed and volume by link for seven time periods

Assignment Periods

Inputs to MOBILE

- County-level fleet age profiles
- Temperature and fuel settings from Oregon DEQ and Washington Dept of Ecology
- Fuel parameters from TRW surveys
 - eg., benzene, aromatics, olefins, sulfur, RVP
- Chromium, nickel, arsenic and PAHs are not explicitly modeled in MOBILE6.2
 - These compounds were modeled using the ADDITIONAL HAPs command
 - The user provides data on basic emission rates, toxic to TOG ratios or toxic to PM ratios in an external datafile to estimate additional HAPs

Base Pollutants in MOBILE

- Running and Non-Running Emissions
 - Benzene, 1,3 Butadiene
- ** Assigned to Running Emissions
 - Formaldehyde, Acetaldehyde, Acrolein
- Based on Diesel Traffic Volumes
 - Elemental Carbon, Total Diesel Exhaust Particulate Matter

300 MOBILE Scenarios

- 2 seasons (summer and winter)
- 30 link type combinations
 - 14 freeway and arterial average speed bins
 - local roadways and freeway ramps
- 5 fleet classes
 - OR I/M: Multnomah, Washington, Clackamas
 - WA I/M: Clark
 - Non I/M

Treatment of Link Types

- Speed-emission equations built for:
 - Freeways and Arterials
 - Independent
 variables: Speed,
 Speed², Speed³,
 Speed⁴, Speed⁵
- Set speeds assumed by MOBILE for:
 - Local Roadways and Freeway Ramps

Example Speed Curve

Allocation of Emissions: Benzene and 1,3 Butadiene

Oracle Database Calculations

- Hourly Volumes
- Hourly Speeds
- Link-Based Emissions
- **Intrazonal Emissions**
- Total Zone-Based Emissions

Conclusions

- Metro will use this methodology for future air quality conformity work
- It can be used by other agencies with a need for geographically detailed analyses of motor vehicle emissions
 - Useful in identifying "hot spots"
- The process is currently very compute-intensive.
 - Fewer time periods and fleets may produce similar results.

Documentation

ftp://ftp.metro-region.org/dist/tran/tf/toxins